Sketching Quadratic Graphs

For example... sketch the graph of $y = 5x^2 - 6x - 8$

Step 1 Factorise the equation. This will give you the x-intercepts (where the line crosses on the x-axis when y = 0)

When y = 0...

 $0 = 5x^2 - 6x - 8$

(5x + 4)(x - 2) = 0 5x = -4x = -0.8 or x = 2

So the 2 intercepts are (-0.8,0) and (2,0)

Step 2 Now you want to find the x co-ordinate of the turning point. This will be halfway between the 2 x-intercepts

You can work this out by adding the 2 ${\rm x}$ co-ordinates and dividing them by 2

 $-0.8 + 2 = 1.2 \div 2 = 0.6$

So the turning point is 0.6 on the x axis.

Step 3 To get the y co-ordinate of the turning point, go back to the original equation and stick in the answer for x.

 $y = 5x^{2} - 6x - 8$ y = 5(0.6)² - 6 x 0.6 - 8 y = -9.8

So the turning point co-ordinates are (0.6, -9.8)

Hopefully you can draw a better graph than this!

Now try some yourself...

1.

For each of the following equations, find the co-ordinates of i/ the x-intercepts, ii/ the turning point

a.
$$y = (x - 1)(x + 2)$$

b. y = (x + 1)(x + 7)

c.
$$y = (x + 10)(x + 6)$$

2.

Sketch the graphs of these equations. Label the turning points and x-intercepts with their co-ordinates (like my rubbish graph on the other side).

a.
$$y = x^{2} - 4$$

b. $y = x^{2} - 4x - 12$
c. $y = x^{2} + 12x + 32$
d. $y = x^{2} + x - 20$
e. $y = -x^{2} - 2x + 3$

Answers (I'm not drawing them...)
1.
3. i.
$$(-1,0)$$
 and $(1,0)$ ii. $(0,-1)$
b. i. $(-7,0)$ and $(-1,0)$ ii. $(-4,-9)$
c. i. $(-2,0)$ ad $(-6,0)$ ii. $(0,-4)$
b. i. $(-2,0)$ and $(2,0)$ ii. $(0,-4)$
b. i. $(-2,0)$ and $(2,0)$ ii. $(0,-4)$
c. i. $(-8,0)$ and $(-4,0)$ ii. $(-6,-4)$
d. i. $(-5,0)$ and $(-4,0)$ ii. $(-6,-4)$
d. i. $(-5,0)$ and $(-4,0)$ ii. $(-6,-4)$
d. i. $(-5,0)$ and $(-4,0)$ ii. $(-1,4)$
e. i. $(-5,0)$ and $(1,0)$ ii. $(-1,4)$
d. i. $(-5,0)$ and $(1,0)$ ii. $(-1,4)$